Symmetry of anomalous dimension matrices explained

Michael H. Seymour ${ }^{a b}$ and Malin Sjödahl ${ }^{a}$
${ }^{a}$ School of Physics \mathcal{E} Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
${ }^{b}$ Theoretical Physics Group, CERN,
CH-1211 Geneva 23, Switzerland
E-mail: Michael.Seymour@cern.ch, Malin.Sjodahl@gmail.com

AbSTRACT: In a previous paper, one of us pointed out that the anomalous dimension matrices for all physical processes that have been calculated to date are complex symmetric, if stated in an orthonormal basis. In this paper we prove this fact and show that it is only true in a subset of all possible orthonormal bases, but that this subset is the natural one to use for physical calculations.

Keywords: Jets, QCD.

Contents

1. Introduction 1
2. Notation 1
3. Hermiticity of colour structure 3
4. Realness of scalar product

1. Introduction

In perturbation theory resummation becomes necessary when large logarithms compensate the smallness of the coupling constant and invalidate a fixed order calculation.

For coloured processes the issue of resummation is complicated by the non-Abelian colour structure. For soft wide angle radiation, where real and virtual gluon emission cancel (at least for global observables), this complication can be expressed in terms of a matrix containing colour and phase space information, the soft anomalous dimension matrix [1-11],

$$
\begin{equation*}
\boldsymbol{\Gamma}=\sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Omega_{i j}, \tag{1.1}
\end{equation*}
$$

where $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ denotes the effect of exchanging a gluon between partons i and j on the colour structure and $\Omega_{i j}$ is the result of integrating (azimuth and rapidity) over the region of phase space where emission is forbidden. This integral can have an imaginary part, coming from Coulomb phase contributions.

It has previously been observed that the soft anomalous dimension matrices have always been symmetric if stated in orthonormal bases (12]. Here we give the proof. The outline of the proof will be to first show that in orthonormal bases the colour matrix $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ is Hermitian. Then we show that for a particularly natural choice of basis, it is also real. From this the symmetry of $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$, and hence $\boldsymbol{\Gamma}$, follows. We start by setting the notation.

2. Notation

We consider the amplitude, \mathcal{M}, for a hard scattering process involving m partons (we do not need to make the distinction between incoming and outgoing partons for the colour considerations discussed here). In general it is a function of the colour index of each of the m partons,

$$
\begin{equation*}
\mathcal{M}=\mathcal{M}_{a_{1} \ldots a_{i} \ldots a_{j} \ldots a_{m}}, \tag{2.1}
\end{equation*}
$$

where a_{i} is in the range 1 to N_{c} if i is a quark or antiquark and 1 to $N_{c}^{2}-1$ if i is a gluon. In the present discussion, it is only the colour of partons i and j that will be relevant, so we suppress all other colour labels. The set of physical colour states forms a vector space, and it is useful to introduce a bra-ket notation for this space,

$$
\begin{equation*}
|M\rangle \equiv \mathcal{M} \ldots a_{i} \ldots a_{j} \ldots \tag{2.2}
\end{equation*}
$$

Physical cross sections are given by the interference of amplitudes, summed over colour indices,

$$
\begin{equation*}
\sigma \sim \sum_{\ldots a_{i} \ldots a_{j} \ldots} \mathcal{N}_{\ldots a_{i} \ldots a_{j} \ldots}^{*} \mathcal{M}_{\ldots a_{i} \ldots a_{j} \ldots} \equiv\langle N \mid M\rangle \tag{2.3}
\end{equation*}
$$

We are interested in the effect on the colour state of \mathcal{M} of exchanging a gluon between partons i and j, which can be written

$$
\begin{equation*}
T_{a_{i} b_{i}}^{\alpha} T_{a_{j} b_{j}}^{\alpha} \mathcal{M}_{\ldots b_{i} \ldots b_{j} \ldots}, \tag{2.4}
\end{equation*}
$$

where α is the colour index of the exchanged gluon and T is the generator of the fundamental representation, $t_{a_{i} b_{i}}^{\alpha}$, if i is an outgoing quark or incoming antiquark, its complex conjugate, $\left(t_{a_{i} b_{i}}^{\alpha}\right)^{*}=t_{b_{i} a_{i}}^{\alpha}$, if i is an outgoing antiquark or incoming quark, and the generator of the adjoint representation, $i f_{a_{i} \alpha b_{i}}$, if i is a gluon. ${ }^{1}$ Using the Hermiticity of the generators, the effect of gluon exchange on the conjugate amplitude is

$$
\begin{equation*}
\left(T_{a_{i} b_{i}}^{\alpha}\right)^{*}\left(T_{a_{j} b_{j}}^{\alpha}\right)^{*} \mathcal{M}_{\ldots b_{i} \ldots b_{j} \ldots}^{*}=\mathcal{M}_{\ldots b_{i} \ldots b_{j} \ldots}^{*} T_{b_{i} a_{i}}^{\alpha} T_{b_{j} a_{j}}^{\alpha} \tag{2.5}
\end{equation*}
$$

Similarly, the interference of an amplitude formed by emitting a gluon from parton i in an amplitude \mathcal{N} with that formed by emitting a gluon from parton j in an amplitude \mathcal{M} is given by

$$
\begin{equation*}
\mathcal{N}_{\ldots b_{i} \ldots b_{j} \ldots}^{*} T_{b_{i} a_{i}}^{\alpha} T_{b_{j} a_{j}}^{\alpha} \mathcal{M}_{\ldots a_{i} \ldots a_{j} \ldots} \tag{2.6}
\end{equation*}
$$

It is therefore natural to define a colour operator $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$, to represent the exchange of a gluon between partons i and j, independent of where it lies relative to the cut through the diagram that defines the physical final state,

$$
\begin{equation*}
\mathcal{N}_{\ldots b_{i} \ldots b_{j} \ldots}^{*} T_{b_{i} a_{i}}^{\alpha} T_{b_{j} a_{j}}^{\alpha} \mathcal{M}_{\ldots a_{i} \ldots a_{j} \ldots} \equiv\langle N| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|M\rangle=\langle N| \mathbf{T}_{j} \cdot \mathbf{T}_{i}|M\rangle \tag{2.7}
\end{equation*}
$$

The symmetry of the colour operator in its indices i and $j, \mathbf{T}_{i} \cdot \mathbf{T}_{j}=\mathbf{T}_{j} \cdot \mathbf{T}_{i}$ is obvious from its definition (2.7) - since the two generators act on different partons' indices their order is irrelevant.

In practical calculations it is convenient to introduce a basis for the vector space of possible colour states for the hard process, the elements of which we denote $|K\rangle$. Any state $|M\rangle$ can be written as a linear combination of $|K\rangle$ states,

$$
\begin{equation*}
|M\rangle \equiv|K\rangle \mathrm{M}_{K} \tag{2.8}
\end{equation*}
$$

[^0]where M_{K} are a set of complex numbers (represented as a column vector M). Restricting ourselves to orthonormal bases, ${ }^{2}$ we have
\[

$$
\begin{equation*}
\mathrm{M}_{K}=\langle K \mid M\rangle \tag{2.9}
\end{equation*}
$$

\]

Our aim is to find, and categorize the properties of, the matrix representation of $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$. Acting with $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ on the state $|M\rangle$ defines a new state, $\mathbf{T}_{i} \cdot \mathbf{T}_{j}|M\rangle$ from which we obtain

$$
\begin{equation*}
\left(\mathbf{T}_{i} \cdot \mathbf{T}_{j}\right)_{L K}=\langle L| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|K\rangle \tag{2.10}
\end{equation*}
$$

We can now state the goal of our proof. Since we observe that the matrix representation of Γ is symmetric for arbitrary observables, and the $\Omega_{i j}$ are observable-dependent, it must be that the matrix representation of $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ is symmetric in orthonormal bases. Our proof is in two parts, first we prove that it is Hermitian in any orthonormal basis, then we try to prove that it is real, since a real Hermitian matrix is automatically symmetric. However, we will find that it is true in only a subset of bases. Finally, we will argue that these are the most natural set of bases, and hence that it is not surprising that all previous calculations, when orthonormalized, do give symmetric matrices.

3. Hermiticity of colour structure

Having taken care to set up the notation, the proof that the matrix representation of $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ is Hermitian is straightforward. It is a consequence only of the definition (2.10) and the Hermiticity of the generators in the parton indices. In fact it is already clear from the definition of the matrix element (2.7) that the right-hand-side of eq. (2.10) is Hermitian,

$$
\begin{align*}
\left(\left(\mathbf{T}_{i} \cdot \mathbf{T}_{j}\right)_{L K}\right)^{*}=\left(\langle L| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|K\rangle\right)^{*} & =\left(\mathcal{L}_{\ldots b_{i} \ldots b_{j} \ldots}^{*} T_{b_{i} a_{i}}^{\alpha} T_{b_{j} a_{j}}^{\alpha} \mathcal{K}_{\ldots a_{i} \ldots a_{j} \ldots}\right)^{*} \\
& =\mathcal{K}_{\ldots a_{i} \ldots a_{j} \ldots}^{*} T_{a_{i} b_{i}}^{\alpha} T_{a_{j} b_{j}}^{\alpha} \mathcal{L} \ldots b_{i} \ldots b_{j} \ldots \\
& =\langle K| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|L\rangle=\left(\mathbf{T}_{i} \cdot \mathbf{T}_{j}\right)_{K L} \tag{3.1}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left(\mathbf{T}_{i} \cdot \mathbf{T}_{j}\right)^{\dagger}=\mathbf{T}_{i} \cdot \mathbf{T}_{j} \tag{3.2}
\end{equation*}
$$

the matrix representation of $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ is Hermitian.

4. Realness of scalar product

It now remains only to show that $\langle K| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|L\rangle$ is real for all i and j for all elements $|K\rangle$, $|L\rangle$ in an orthonormal basis. In fact it is easy to see that this cannot be the case in general, because if there is some initial basis in which it is true, one can apply an arbitrary unitary

[^1]transformation to another orthonormal basis in which it is not. Our task is therefore to show that there does exist a basis, or set of bases, in which it is true. In this section we show, not only that this is the case, but also that such a basis is the most natural one to use for a physical calculation, explaining why this property has been observed in all previous calculations.

In general, one can always choose a basis constructed from delta functions in quark indices, delta functions in gluon indices, generators $t_{b c}^{a}$, and the symmetric and antisymmetric structure constants $d_{a b c}$ and $i f_{a b c}$,

$$
\begin{equation*}
(i f / d)_{a b c}=2\left(\operatorname{Tr}\left[t^{a} t^{b} t^{c}\right](-/+) \operatorname{Tr}\left[t^{b} t^{a} t^{c}\right]\right) . \tag{4.1}
\end{equation*}
$$

These can be used to form a complete basis for any physical process, because the Feynman rules contain no other factors. Therefore the matrix element $\langle K| \mathbf{T}_{i} \cdot \mathbf{T}_{j}|L\rangle$ is a scalar in colour space, constructed from these building blocks. Using the relation (4.1), all occurences of $d_{a b c}$ and $i f_{a b c}$ can be converted into generators of the fundamental representation. Moreover, these generators can be replaced pairwise by delta functions using the relation

$$
\begin{equation*}
t_{c a}^{\alpha} t_{d b}^{\alpha}=\frac{1}{2}\left(\delta_{a d} \delta_{b c}-\frac{1}{N_{c}} \delta_{a c} \delta_{b d}\right) . \tag{4.2}
\end{equation*}
$$

Thus every matrix element in such a basis reduces to strings of delta functions with real coefficients and is clearly real.

Therefore any orthonormal basis constructed from delta functions, generators and group structure constants will result in a symmetric anomalous dimension matrix. As we have already mentioned, such a choice of basis is extremely natural for describing physical processes, since the colour part of any Feynman rule can be represented in this way. Although we have shown that the colour part of the anomalous dimension matrix, $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$ in eq. (1.1), is real and Hermitian, and therefore symmetric, the kinematic part, $\Omega_{i j}$, is complex in general, so the anomalous dimension matrix itself is complex symmetric, and hence not Hermitian.

Acknowledgments

We thank Jeff Forshaw, Johan Grönqvist and Gösta Gustafson for useful discussions. MS thanks the Theoretical Physics Department of Lund University for their hospitality during the completion of this work.

References

[1] M.G. Sotiropoulos and G. Sterman, Color exchange in near forward hard elastic scattering, Nucl. Phys. B 419 (1994) 59 hep-ph/9310279.
[2] H. Contopanagos, E. Laenen and G. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 hep-ph/9604313.
[3] N. Kidonakis, G. Oderda and G. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 hep-ph/9803241.
[4] G. Oderda, Dijet rapidity gaps in photoproduction from perturbative $Q C D$, Phys. Rev. D 61 (2000) 014004 hep-ph/9903240.
[5] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross sections, Phys. Lett. B 575 (2003) 268 hep-ph/0307035.
[6] R.B. Appleby, Rapidity gap physics at contemporary colliders, hep-ph/0311210.
[7] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 hep-ph/0407286.
[8] Y.L. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form factor, Phys. Lett. B 631 (2005) 118 hep-ph/0508130.
[9] A. Kyrieleis and M.H. Seymour, The colour evolution of the process q q $\rightarrow q$, JHEP 01 (2006) 085 hep-ph/0510089.
[10] M. Sjödahl, Color evolution of $2 \rightarrow 3$ processes, arXiv:0807.0555.
[11] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP 09 (2008) 128 arXiv:0808.1269.
[12] M.H. Seymour, Symmetry of anomalous dimension matrices for colour evolution of hard scattering processes, JHEP 10 (2005) 029 hep-ph/0508305.
[13] N.N. Nikolaev, W. Schafer and B.G. Zakharov, Nonlinear $k(T)$-factorization for gluon-gluon dijets produced off nuclear targets, Phys. Rev. D 72 (2005) 114018 hep-ph/0508310.
[14] Y.L. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP 01 (2006) 007 hep-ph/0509078.

[^0]: ${ }^{1}$ Different sign conventions are often chosen for physical calculations, but that will not be relevant for the present discussion.

[^1]: ${ }^{2}$ Anomalous dimension calculations have typically been performed in orthogonal, but not normalized, bases, in which the symmetry property observed in 12 is not manifest. It is interesting to note that 13, which appeared on the same day as 12, does use an orthonormal basis and does obtain a symmetric anomalous dimension matrix, as does an appendix, not referred to in the rest of the paper, of 114, which appeared some weeks later.

